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Abstract

The problem about dynamic interaction of discontinuous waves with interfaces between anisotropic elastic media is
considered. To investigate this phenomenon accompanied by formation of reflected and refracted quasi-longitudinal
and quasi-shear discontinuous waves, a technique based on joint usage of the zero approximation of the ray theory
and method of stereomechanical impact is proposed. It is used for the analysis of the wave front transformation, scat-
tering and focusing. The setup problem solutions can be applied to discovering the most seismically hazardous zones in
the earth�s crust, interpretation of geophysical data about geological rock structures and the analysis of the causes of
dynamic delamination of layered composite and nanomaterials.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In studies of discontinuous (shock type) waves propagation in elastic media, the greatest attention is, as a
rule, devoted to geometrical construction of the evolving field-function discontinuity surfaces and calcula-
tion of the discontinuity magnitudes, which provide the most complete information about the wave front
transformation and the intensity of an impulse carried by the wave at each point of the front surface.

As to seismology these questions are topical for investigation of the wave processes taking place in the
earth�s crust and for description of behaviour of seismic waves in the vicinity of tectonic inhomogeneities,
where the waves can endure the effects of focusing or scattering. These effects manifest themselves most
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clearly in the convex and concave parts of the interfaces between rock structures. It is known, that there are
no ways of prognosticating and eliminating the earth-quakes, but using the questions solutions it is possible
to find the tectonic regions, where the natural seismic waves can focus and concentrate their energy provok-
ing collapse of above-ground and underground constructions or where the waves disperse without damage
for the environment.

In the course of seismic reconnaissance of mineral resources the considered results are useful for theo-
retical interpretation of geophysical data about the explored geological rock structures.

The problem solution can also be used for the analysis of explosion wave influence on environment and
for elaboration of rational methods for pursuance of explosion works eliminating the possibility of artificial
earthquakes generation at predetermined regions.

The considered features are inherent also in mechanics of composites and nanomaterials. One of the most
important advantages of the composite materials is their property to withstand shock loads and dissipate
mechanical energy of vibrational motions. It is associated to some extent with non-homogeneity of the struc-
ture materials and existence of interfaces between the system subdomains, where the moving fronts of strain
saltuses experience the reflection–refraction effects. In consequence of execution of several acts of this type
effects the wave fronts diffract and the shock wave dissipates through transformation of the strain energy into
heat. However these phenomena are very often accompanied by undesirable changes of the composite med-
ium structure, correlated with disruption of bonds between its components and the structure delamination.

The discussed phenomena are usually characterized by short duration of highly intensive initial field
of pressure, which at the initial stage of time is concentrated, as a rule, in a small domain adjacent to
the zone of impact initiation of the wave and by transformation of the wave front surface as it propagates.
Inasmuch as in this case the boundary of the domain chosen for calculation evolves with the wave front
progress, the solution has to be found in the family of discontinuous functions evolving in time. So the tra-
ditional classical and numerical methods turn out to be of low efficiency for the analysis of the similar
processes.

For the solution of the problems of such type a prominent role is played by the methods of geometrical
optics (Fedorov, 1968; Karal and Keller, 1959; Ogilvy, 1990; Podilchuk and Rubtsov, 1988, 1996), used in
the theory of field discontinuity front propagation in non-dispersive media. They are correlated with appli-
cation of a ray coordinate system wherein aggregate of the coordinate surfaces coincides with the evolving
surfaces of the non-stationary waves. Formally, this approach is realized through representation of the
wave equation solution in terms of a ray series. By means of its use, an Eiconal equation and transport
equations system are constructed. The former is a non-linear partial differential equation describing the
front surface and the ray aggregate. So it is referred to as kinematic equation. The transport equations con-
stitute a system of linear partial equations. They determine the field functions at the front surface and be-
hind it. So these equations are referred to as dynamic ones. Obviously the field discontinuity generated at
the front surface is described by the zeroth term of the ray series.

It should be emphasized that the equation system obtained in this way is also very complicated and the
convergence of its solutions can be achieved in the simplest cases only. For this reason, usually the greatest
attention is paid to the zeroth approximation of the ray method (Petrashen, 1980), providing good quan-
titative description of the wave phenomenon in a small vicinity of the wave front. Its application allows one
to construct the evolving front, to determine the wave polarization vector at every point of its surface, to
calculate the discontinuity magnitudes of the functions of strains and stresses and also the wave phase as
functions of the ray coordinates. As to this method, the zeroth term of the ray series is taken into account,
which can be calculated independently of other ones. This point has a simple mechanical explanation. It lies
in the fact that every element of the discontinuous wave front moves with the sound speed. It has the largest
value at the point considered and no other perturbation can move faster in its vicinity. So the dynamic per-
turbations from other points of the medium cannot overtake the particular element and affect on the value
of its field function discontinuity.
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In parallel with this, the zeroth approximation of the ray method used jointly with the locally plane ap-
proach (Petrashen, 1980; Gulyayev et al., 2002) allows one to state the problem about interaction of shock
waves with interfaces between the elastic media possessing different mechanical properties. This problem is
associated with the necessity to construct kinematically the front surfaces of reflected and refracted waves
with different polarizations and to calculate dynamical parameters of the field discontinuities on these
fronts.

The technique for solving the kinematic problem of the interactions like this is based on the analysis of
the Snell equations. In the cases of transversally isotropic elastic media, these equations are essentially non-
linear. Gulyayev et al. (2000) proposed a procedure for their solution, which rests on combined application
of the method of continuation by a parameter and the Newton method. To analyse peculiarities of the field
discontinuity transformations in interfaces between elastic media, usually the conditions of stresses conti-
nuity are used (Fedorov, 1968; Petrashen, 1980). This approach is rather complicated, because it is not con-
venient to express the field discontinuities through stresses, especially in the cases of anisotropic media. But
when the zeroth approximation of the ray method is used, an alternative method of attack becomes more
rational, which relates to the above-stated effect of discontinuities values independence on dynamic pertur-
bations located behind the front.

It is based on the integral formulation of physical laws, which are completely equivalent to the differen-
tial statement of the problem for the continuous processes. According to the mentioned principles, both
some integral correlations between functions and their lowest derivatives (the kinematic conditions of com-
patibility) as well as the law of momentum conservation are satisfied in the moving discontinuities surfaces.
This idea (Gulyayev et al., 1997), based on the theorem about the momentum conservation at impact inter-
action (Gol�dsmit, 1960), was used for formulation of equations of dynamic interaction of a discontinuous
wave with an interface between isotropic elastic media. In (Anikiev et al., 2000) this approach was used for
theoretical and experimental investigation of the phenomenon of quasi-total internal reflection at the inter-
face between water and elastic media. Here it is used in the framework of the ray method zeroth approx-
imation for the description of the dynamical process at statement of the dynamic boundary conditions in
the surfaces interfacing anisotropic media.
2. The problem statement

Let physical properties of a homogeneous anisotropic medium be defined by the elasticity parameters
cik,pq = const. and density q = const. The medium motion is described by the equations
X3

k;p;q¼1

kik;pq
o
2uq

oxk oxp
� o

2ui
ot2

¼ 0 ði ¼ 1; 2; 3Þ; ð1Þ
where x1, x2, x3 are the Cartesian coordinates; u1, u2, u3, the components of the elastic displacement vector;
t the time; kik,pq = cik,pq/q.

The system (1) solution is represented in the form of a plane monochromatic wave with wave number k
and phase velocity v. Its fronts are surfaces of constant phase n Æ r � v Æ t = const., moving with the velocity
v = v Æ n and coinciding locally with areas perpendicular to the unit vector n.

The wave polarization vector A and the phase velocity v are determined for the selected direction n on
the basis of homogeneous algebraic equations relative to Ai (Fedorov, 1968; Petrashen, 1980)
X3

k;p;q¼1

kik;pqnknpAq � v2Ai ¼ 0 ði ¼ 1; 2; 3Þ. ð2Þ
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With the help of these equations one can find three values of the velocity
vð1ÞðnÞ > vð2ÞðnÞ P vð3ÞðnÞ > 0
and polarization vectors A(r) defining the displacement vectors
uðrÞ ¼ uðrÞAðrÞ ðr ¼ 1; 2; 3Þ. ð3Þ

If a discontinuous wave is considered, the constitutive equations provide that its front surface may be

represented by the correlation
sðx1; x2; x3Þ � t ¼ 0; ð4Þ

where the function s(x1,x2,x3) has to satisfy the first order partial differential equation (Petrashen, 1986)
X3

i;k;p;q¼1

kik;pqpkppA
ðrÞ
q AðrÞ

i ¼ 1.
It generalizes the Eikonal equation used in geometrical optics for the construction of systems of rays and
fronts to the case of anisotropic elastic waves.

The quantities pk (k = 1,2,3) included in the above equation represent the components of the refraction
vector pk � os=oxk ¼ nk=vðrÞðnÞ ðk ¼ 1; 2; 3Þ.

The above equation must be solved to be able to reconstruct the transforming fronts of the wave. Using
the method of characteristics this equation is rearranged to the system of ordinary differential equations
dxk
ds

¼ nk ¼
X3

i;p;q¼1

kik;pqppA
ðrÞ
q AðrÞ

i ;

dpk
ds

¼ 0 ðk ¼ 1; 2; 3Þ.

ð5Þ
The first group of these equations describes the wave propagation along the ray with the ray velocity
n = n(r)(n,xk), which generally does not coincide with the phase velocity v(r). In case of a homogeneous med-
ium the ray is rectilinear, but it is not orthogonal to the phase front. Points on the surface of the front, at
which the determinant of the matrix
X3

i;p;q¼1

kik;pqA
ðrÞ
q AðrÞ

i

�����
����� ðk ¼ 1; 2; 3Þ
of the coefficients of the right-hand side of this system vanishes, are bifurcation points, since, in a small
vicinity of them, two or more rays may correspond to one direction of the vector of the normal n (Arnold
et al., 1984; Kravtsov and Orlov, 1980; Poston and Stewart, 1978; Gilmore, 1981). Hence, these points are
located either on caustics or at focal points of the rays.

The system of rays and wave fronts constructed with the use of (5) enables one to proceed to determine
the wave intensity in the neighbourhood of the wave front. For this purpose, it is convenient to expand the
solution of (1) along the ray behind the front into the series
uq ¼
X1
m¼0

uðmÞq ðx1; x2; x3Þfm½t � sðx1; x2; x3Þ� ðq ¼ 1; 2; 3Þ; ð6Þ
where the functions fm, satisfying the correlations f 0
mðyÞ ¼ fm�1ðyÞ, are supposed to possess discontinuities

of their derivatives, for example, of the order n + 2 (Petrashen, 1980).
In formulating the problem about the wave behaviour in a small vicinity behind its front and calculation

of the stress discontinuity, only one term m = 0 is retained in (6), so
uq ¼ uð0Þq x1; x2; x3ð Þ � t � s x1; x2; x3ð Þ½ � ð7Þ
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and the vector u(0) is calculated using the homogeneous system of equations
X3

k;p;q

kik;pqpkppu
ð0Þ
q � uð0Þi ¼ 0 ði ¼ 1; 2; 3Þ; ð8Þ
which have the solution (Petrashen, 1980)
uð0Þq ¼
c0ða; bÞ � AðrÞ

q ða; b; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jða; b; sÞ

p ðq ¼ 1; 2; 3Þ. ð9Þ
Here a, b, s are the system of ray coordinates and the quantity
J ¼ oðx1; x2; x3Þ
oða; b; sÞ ð10Þ
is a functional determinant for conversion of the ray coordinates into Cartesian ones. It is the measure of
the ray divergence in the ray tube.

The above relations make it possible to follow the evolution of a shock type wave front and calculate the
field-function discontinuity on its surface, as it propagates in a homogeneous anisotropic medium.
3. Kinematics of a discontinuous wave interaction with a plane interface

In study of interaction of a discontinuous wave with an interface we are to solve two problems—
kinematic and dynamic ones. The first problem is reduced to the construction of the front surfaces of
the reflected and refracted waves produced at interaction of the incident wave with interface surface G

between media I and II (Fig. 1). To set it up, a ‘‘locally plane approach’’ (Petrashen, 1980) is used, whereby
all the front surfaces in the small vicinity of the point of the wave interaction with the interface (as also the
Fig. 1. Scheme of the wave velocities directions.
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surface G is itself) are considered to be locally plane. It allows one to assume, that at reflection–refraction of
a plane wave at the plane interface, reflected and refracted waves are generated, which also belong to the
family of plane waves. The solution technique for the first problem, based on the use of the formulated pre-
mise, leads to the necessity to solve the generalized equations of Snell, which in case of transversally iso-
tropic media take the form:
sinHðrÞ

vðrÞðHðrÞÞ
¼ sinHðmÞ

1

vðmÞ1 ðHðmÞ
1 Þ

¼ sinHðlÞ
2

vðlÞ2 ðHðlÞ
2 Þ

ðr; m; l ¼ 1; 2Þ. ð11Þ
Here the designations are specified: the superscript in brackets denotes the wave with number r,m,l = 1 cor-
responding to quasi-longitudinal (quasi-primary) qP-wave and r,m,l = 2 corresponding to quasi-shear
(quasi-secondary) qS-wave; the subscript in brackets indicates the medium number; the values v(r) and
H(r) without subscripts relate to the incident wave propagation in the first medium.

The difference between correlations (11) and the usual form of the Snell law is in the denominators
v(v)(H(v)), v(l)(H(l)) dependence on the unknown angles H(m), H(l) and, implicitly, on the incidence angle
H. So, in order to find the values of angles H(m),H(l) (m,l = 1,2) corresponding to the preset H, it is neces-
sary to solve the initial non-linear system. With this aim in view, the Newton method is used jointly with the
method of continuation by a parameter (Gulyayev et al., 2000).

The condition of possible non-uniqueness of the system (11) solution corresponds to the convergence
(tangency) and intersection of the reflected and refracted rays after the incident rays interaction with the
interface G, while the aggregate of such critical states is related to the formation of an envelope of the fam-
ily of rays, which is referred to as a caustic. The caustics give rise to the formation of geometrical singular-
ities at the surfaces of the reflected and refracted wave fronts as a result of interaction of a regular incident
wave front even with a plane boundary G.

Since the singularities of the wave fronts are generated on the caustics, they will also be focused on the
caustics, giving rise to the vanishing of the functional determinant J in (9) and an unlimited increase in the
field intensity at the points of geometrical singularities. At the caustics the wave phase is also reversed
(Kravtsov and Orlov, 1980).
4. Dynamics of a discontinuous wave interaction with a plane interface

After the construction of the system of rays and fronts of the reflected and refracted discontinuous
waves, it becomes possible to proceed to the investigation of dynamics of the incident wave interaction with
the interface between two elastic media. With this aim in view, it is necessary to present the equations of
boundary conditions at the interface surface
ð _uð1Þ � _uð2ÞÞ
��
G
¼ 0; ð12Þ

ðr2ð1Þ þ r2ð2ÞÞ
��
G
¼ 0; ð13Þ
where _uð1Þ, _uð2Þ are the velocity vectors of the media particles at the interface G; r2(1), r2(2), the vectors of
density of the forces r2 acting on the elementary area x2 = const. in media I and II, correspondingly.

But inasmuch as in our case the investigations are performed in the framework of the zeroth approxi-
mation of the ray method (Petrashen, 1980) and the problem is stated in terms of the velocity discontinu-
ities of the elastic elements, it is more convenient to use the integral approach for the description of
dynamical processes at interaction of the wave fronts and to resort to the methods of the theory of stereo-
mechanical impact (Gol�dsmit, 1960). Furthermore, in analysis of the shock wave interactions with the
curvilinear interface G the locally plane conception of the statement is applied.
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To substantiate the validity of the used approach to the problem of a discontinuous wave interaction
with an interface between two anisotropic elastic media it should be pointed out that in the framework
of the zeroth approximation it is absolutely identical with the technique based on the application of equa-
tion (13) and in this paper it is used only for simplifying the algebraic and differential transformations.

At first, take into consideration a simple example. Let a short discontinuous impact propagate in a bar of
unit area with discontinuous properties of elasticity module Ei and densityqi (i = 1,2) in its parts I and II
separated by interface surface G (Fig. 2). Before impact interaction with G the particles in the discontinuous
wave have velocity _uIð1Þ, which is considered to be constant inside the wave with the length v(1) Æ Dt. Here
vð1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
E1=q1

p
is the wave propagation velocity; Dt, the impact action duration; the indices I, R, T denote

the incident, reflected and transmitted waves.
It can be written as
r ¼ Ee; e ¼ ou
ox

; _u ¼ ou
ot

.

At the wave front the equalities are valid as follows:
x ¼ v � t; dx ¼ v � dt.

Herefrom it issues as
e ¼ ou
ox

¼ ou
vot

¼ 1

v
_u.
Using these correlations, one gains
r ¼ Ee ¼ E � _u
v

¼ qv � _u
and
r � Dt ¼ qv � _u � Dt ¼ _u � Dm ¼ DQ.
Here Dm = qv Æ Dt is the mass of the bar particles involved into the motion, DQ is the momentum of these
particles.

Now consider the condition of momentum conservation for the bar elements involved into motion
before the impact with the interface G and after the impact (Gol�dsmit, 1960)
DQI ¼ DQT þ DQR. ð14Þ
(1)

(1)

(1)

(1)

(1)

(2)

(2)

v t.∆

(1)v t.∆

→

Interface

11 ρ ρ,E v 22 ,E

Before impact iI
1 1

2v t

v v

After impact u

u x

R Tu

.

..

Fig. 2. Discontinuous wave interaction with the bar interface.
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After appropriate substitutions, the equation that defines the connection between velocities of the par-
ticles of the incident, transmitted and reflected waves is deduced as follows (Fig. 2)
q1vð1Þ _u
I
ð1Þ ¼ q2vð2Þ _u

T
ð2Þ � q1vð1Þ _u

R
ð1Þ. ð15Þ
This equation is identical to the equation
rI ¼ rT � rR ð16Þ

resulting from (13).

The identity shown suggests that the approach to the task of determination of the stress discontinuity
interaction with the interface by the use of momentum conservation condition and stereomechanical theory
of impact (Gol�dsmit, 1960) is equivalent to the technique based on application of the condition of the stress
continuity in the form of Eq. (13).

To apply this technique to the considered problem for anisotropic elastic media initially stop on some
preliminary remarks. Note, that a discontinuous wave front is surface (4) or
n � r
v

� t ¼ 0; ð17Þ
where v = v Æ n.
So
d
n � r
v

¼ dt. ð18Þ
Then it issues from (7) as
_uq ¼
ouq
ot

¼ uð0Þq
and
ouq
on

¼ ouq
vot

¼ 1

v
� uð0Þq . ð19Þ
Equality (19) is valid at wave front surface (17) only and it testifies that the element strain ouq=on and its
velocity ouq=ot differ solely by the constant denominator v, for this reason they are equivalent at the prob-
lem statement.

It is important also to underline that the correlation
_uðrÞ ¼ _uðrÞAðrÞ ð20Þ

follows from (3).

At statement of dynamic conditions of interaction of the incident, reflected and refracted discontinuous
waves at interface, the zeroth approximation of the ray method is used. The locally plane statement of the
problem in the small vicinity of the interface and the integral approach permit one to apply to the methods
of the theory of stereomechanical impact (the principle of momentum conservation) for the phenomenon
description.

According to this conception, now consider that a plane quasi-longitudinal shock type discontinuous qP-
wave, propagating with phase velocity v(1) in medium I, interacts at an incident angle H(1) with a plane
interface G, x2 = 0 between media I and II. In the plane of symmetry x3 = 0, which is perpendicular to
the wave front and plane G, separate a quadrangle element of thickness v(1) Æ Dt by two rays l1 and l2 in
medium I behind the front (Fig. 3). Here Dt is so small time segment that it becomes possible to neglect
change of discontinuous components of the field functions behind the front and to consider them to be con-
stant. Underline, that the last assumption is in correspondence with the zeroth approximation of the ray
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method. Assume, that the rays l1 and l2 intersect G at the angle W(1) and separate unit length segment AB in
it. Then the distance between the rays measures 1 Æ cosW(1).

At interaction of the considered wave with the plane G, two plane reflected (qP(1),qS(1)) and two plane
refracted (qP(2),qS(2)) waves, polarized also in the incident plane, are generated. As it takes place, two pairs
of quadrangle elements between the appropriate rays behind the fronts of the generated waves correspond
to the separated element behind the front of the incident wave (Fig. 4).

Reasoning from the integral approach in the theory of discontinuous waves, considering the conditions
of kinematic compatibility and dynamic conservation in the wave front (Petrashen, 1980), the description of
Fig. 4. Interaction of a discontinuous wave with an interface between anisotropic elastic media.
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dynamic interaction of this waves in the interface G will be performed on the basis of the principle of
momentum conservation at impact (Gol�dsmit, 1960) applied to the elements of the media I and II, involved
into motion by virtue of the impact interaction.

Calculate the vector DQ(1) of momentum of the element separated from the incident wave. Assume that
dimensions of all the elements along the x3 coordinate locally equal a unit. Then the element mass is
q1 Æ n(1) Æ Dt Æ cosW(1) and the momentum vector is DQð1Þ ¼ q1 � nð1Þ � Dt � cosWð1Þ � _uð1Þ.

After interaction of the incident wave with the G interface the plane reflected and refracted waves are
generated. In their layers of quite small thicknesses viDt behind the front planes, the field function compo-
nents experienced the discontinuity (the u function derivatives with respect to the normal and time, as well
as strains and stresses) remain constant. In the elements of these layers, formed by interaction with the ele-
ment separated from the incident wave (Fig. 4), the unknown values of the media particles velocities con-
stitute _u

ð1Þ
ð1Þ, _u

ð2Þ
ð1Þ (in the reflected qP(1)- and qS(1)-waves) and _u

ð1Þ
ð2Þ, _u

ð2Þ
ð2Þ (in the refracted qP(2)- and qS(2)-waves),

whereas their momentum vectors are equal to
DQð1Þ
ð1Þ ¼ q1 � cosW

ð1Þ
ð1Þ � n

ð1Þ
ð1Þ � Dt � _u

ð1Þ
ð1Þ; DQð2Þ

ð1Þ ¼ q1 � cosW
ð2Þ
ð1Þ � n

ð2Þ
ð1Þ � Dt � _u

ð2Þ
ð1Þ;

DQð1Þ
ð2Þ ¼ q2 � cosW

ð1Þ
ð2Þ � n

ð1Þ
ð2Þ � Dt � _u

ð1Þ
ð2Þ; DQð2Þ

ð2Þ ¼ q2 � cosW
ð2Þ
ð2Þ � n

ð2Þ
ð2Þ � Dt � _u

ð2Þ
ð2Þ.

ð21Þ
Vector of the medium particle displacement behind the wave front is represented by (3). Taking into ac-
count this equality and correlations (21) one gains
DQð1Þ ¼ q1 � cosWð1Þ � nð1Þ � Dt � _uð1ÞðAð1Þ
1 i1 þ Að1Þ

2 i2Þ;
DQðrÞ

ðiÞ ¼ qi � cosW
ðrÞ
ðiÞ � n

ðrÞ
ðiÞ � Dt � _u

ðrÞ
ðiÞ ðA1ðiÞðrÞi1 þ AðrÞ

2ðiÞi2Þ ði ¼ 1; 2Þ. ð22Þ
Here AðrÞ
1ðiÞ, A

ðrÞ
2ðiÞ are the projections of the corresponding vector of polarization on corresponding axes;

r = 1,2 identifies the wave polarization type; i = 1,2 is the medium number.
Inasmuch as the momentum of the elements of media I and II, involved into motion after interaction of

the incident wave with the plane G, does not change in consequence of this interaction, the condition of
dynamic joining the solution in the plane G can be represented in the form
DQð1Þ ¼ DQð1Þ
ð1Þ þ DQð2Þ

ð1Þ þ DQð1Þ
ð2Þ þ DQð2Þ

ð2Þ. ð23Þ
It is complemented by condition (12) of compatibility of velocities of particles of media I and II in the G
plane:
_uþ _uð1Þ
� ���

G
¼ _uð2Þ

��
G
. ð24Þ
Considering _uð1Þ to be prescribed, after projecting vector correlations (23), (24) on the axes Ox1, Ox2 one

gains four scalar equations for determinations of the unknown velocities _uð1Þð1Þ, _u
ð2Þ
ð1Þ, _u

ð1Þ
ð2Þ, _u

ð2Þ
ð2Þ. Represent them

in the matrix notation:
A � w ¼ bP ; ð25Þ

where A is the matrix of dimension 4 · 4:
A ¼

q1n
ð1Þ
ð1Þ cosW

ð1Þ
ð1ÞA

ð1Þ
1ð1Þ q1n

ð2Þ
ð1Þ cosW

ð2Þ
ð1ÞA

ð2Þ
1ð1Þ q2n

ð1Þ
ð2Þ cosW

ð1Þ
ð2ÞA

ð1Þ
1ð2Þ q2n

ð2Þ
ð2Þ cosW

ð2Þ
ð2ÞA

ð2Þ
1ð2Þ

q1n
ð1Þ
ð1Þ cosW

ð1Þ
ð1ÞA

ð1Þ
2ð1Þ q1n

ð2Þ
ð1Þ cosW

ð2Þ
ð1ÞA

ð2Þ
2ð1Þ q2n

ð1Þ
ð2Þ cosW

ð1Þ
ð2ÞA

ð1Þ
2ð2Þ q2n

ð2Þ
ð2Þ cosW

ð2Þ
ð2ÞA

ð2Þ
2ð2Þ

�Að1Þ
1ð1Þ �Að2Þ

1ð1Þ �Að1Þ
1ð2Þ �Að2Þ

1ð2Þ

�A2ð1Þ
2ð1Þ �Að2Þ

2ð1Þ �Að1Þ
2ð2Þ �Að2Þ

2ð2Þ

��������������

��������������

;
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w ¼ _uð1Þð1Þ _uð2Þð1Þ _uð1Þð2Þ _uð2Þð2Þ

� �T

is the vector of unknown values; bp ¼ ðq1n
ð1Þ cosWð1ÞAð1Þ

1 _uð1Þq1n
ð1Þ cosWð1Þ

Að1Þ
2 _uð1ÞAð1Þ

1 _uð1ÞAð1Þ
2 _uð1ÞÞT is the vector of the right-hand side, corresponding to the incident qP-wave.

To confirm the reliability of the performed transformations and the constructed correlations, consider
the marginal state of the system, when a small locally plane element of the front moves along the Ox2 axis
in such a manner, that W(1) = 0 and the normal n is collinear to the axis Ox2. Then the quasi-longitudinal
qP-wave becomes completely longitudinal and known correlation (15) for normal interaction of a plane
longitudinal shock type wave with the plane interface between isotropic elastic media should be valid. Gen-

uinely, as in doing so Að2Þ
1ð1Þ ¼ �1, Að1Þ

1ð1Þ ¼ Að1Þ
1ð2Þ ¼ 0, Wð1Þ ¼ Wð1Þ

ð1Þ ¼ Wð1Þ
ð2Þ ¼ Wð2Þ

ð1Þ ¼ 0, system (25) with the ma-

trix A disintegrates into two unjoined systems of two equations with the solution
_uð1Þð1Þ ¼
q2v

ð1Þ
ð2Þ � q1v

ð1Þ
ð1Þ

q2v
ð1Þ
ð2Þ þ q1v

ð1Þ
ð1Þ

_uð1Þ; _uð1Þð2Þ ¼
2q1v

ð1Þ
ð1Þ

q2v
ð1Þ
ð2Þ þ q1v

ð1Þ
ð1Þ

_uð1Þ; _uð2Þð1Þ ¼ 0; _uð2Þð2Þ ¼ 0; ð26Þ
which coincides with the solution, represented in Gol�dsmit (1960) relative to stresses.
Furthermore, the values of the medium particle velocities found with the help of (25) play the role of

initial conditions and are uð0Þq ða; b; 0Þ used in the formulae like (8) and (9).
If the incident wave is quasi-shear (qS), the technique of transformations is the same, only the expression

for the momentum vector of the system before the impact changes. In this case the vector
DQð2Þ ¼ q1 � cosWð2Þ � nð2Þ � Dt � _uð2ÞðAð2Þ
1 i1 þ Að2Þ

2 i2Þ

is used instead of DQ(1) and Eq. (25) is replaced by
A � w ¼ bS ;
where A and w are the same but the right-side term assumes the form
bS ¼ ðq1n
ð2Þ cosWð2ÞAð2Þ

1 _uð2Þ q1n
ð2Þ cosWð2ÞAð2Þ

2 _uð2Þ Að2Þ
1 _uð2Þ Að2Þ

2 _uð2ÞÞT.

From the setup problem about dynamic interaction of a discontinuous wave with an interface G between

anisotropic elastic media I and II, particular cases follow.

1. For example, let the plane G be a free boundary of medium I (Fig. 5). The equality DQð1Þ
ð2Þ þ DQð2Þ

ð2Þ ¼ 0
should be satisfied, according to which condition (23) is simplified to the form
DQð1Þ ¼ DQð1Þ
ð1Þ þ DQð2Þ

ð1Þ.
In this situation, only two unknown values _uð1Þð1Þ, _u
ð2Þ
ð1Þ remain, which are found from the system
q1n
ð1Þ
ð1Þ cosW

ð1Þ
ð1ÞA

ð1Þ
1ð1Þ _u

ð1Þ
ð1Þ þ q1n

ð2Þ
ð1Þ cosW

ð2Þ
ð1ÞA

ð2Þ
1ð1Þ _u

ð2Þ
ð1Þ ¼ q1n

ð1Þ cosWð1ÞAð1Þ
1 _uð1Þ;

q1n
ð1Þ
ð1Þ cosW

ð1Þ
ð1ÞA

ð1Þ
2ð1Þ _u

ð1Þ
ð1Þ þ q1n

ð2Þ
ð1Þ cosW

ð2Þ
ð1ÞA

ð2Þ
2ð1Þ _u

ð2Þ
ð1Þ ¼ q1n

ð1Þ cosWð1ÞAð1Þ
2 _uð1Þ;

ð27Þ
whereas Eq. (24) loses its meaning and is excluded from consideration.So it follows that when a plane

qP-wave falls normally on G, system (27) has the unique solution _uð1Þð1Þ ¼ � _uð1Þ, _uð2Þð1Þ = 0. In this case,

as in the theory of isotropic discontinuous waves, only one plane discontinuous qP(1)-wave reflects,
which has the same polarization and intensity, but opposite phase.

2. In the case, when elastic medium I is rigidly connected with absolutely rigid body II in the plane G, the
inverse situation occurs. The equations of momentum conservation are not valid and on the strength of
equalities _uð1Þð2Þ = 0, _uð2Þð2Þ ¼ 0, condition (24) takes the form
_uþ _uð1Þ
� ���

G
¼ 0.



Fig. 5. Interaction of a discontinuous wave with a free boundary.
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The two unknown values _uð1Þð1Þ, _u
ð2Þ
ð1Þ are determined through the use of the equations
Að1Þ
1ð1Þ _u

ð1Þ
ð1Þ þ Að2Þ

1ð1Þ _u
ð2Þ
ð1Þ ¼ �Að1Þ

1 _uð1Þ;

Að1Þ
2ð1Þ _u

ð1Þ
ð1Þ þ Að2Þ

2ð1Þ _u
ð2Þ
ð1Þ ¼ �Að1Þ

2 _uð1Þ.
ð28Þ
If the incident wave front is parallel to the G plane, also only one plane discontinuous qP1-wave reflects,
for which, as in the theory of isotropic discontinuous waves, the discontinuity value, polarization and
phase coincide with the appropriate characteristics of the initial incident wave.

3. Now consider the case, when medium II is isotropic and is characterized by the elasticity parameters k2,
l2, q2. In this case all the directions are equivalent in this medium and only two kinds of waves can prop-
agate in it. They are the purely longitudinal P-wave with the velocity a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 þ 2l2Þ=q2

p
and the purely

shear S-wave with the velocity b ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l2=q2

p
. As it takes place, the wave front surface is orthogonal to

rays, the vector of ray velocity coincides with the vector of phase velocity and the velocities of particles
displacements are in parallel with the rays for the P-waves or orthogonal to them for the S-waves. Cal-
culate momenta of elements of the corresponding particles of the refracted wave, which relate to the unit
segment AB of the interface G (Fig. 4)
DQð1Þ
ð2Þ þ DQð2Þ

ð2Þ ¼ a � Dt � q2 � _u
ð1Þ
ð2Þ � cosH

ð1Þ
ð2ÞðsinH

ð1Þ
ð2Þ � i1 � cosHð1Þ

ð2Þ � i2Þ þ b � Dt � q2 � _u
ð2Þ
ð2Þ

� cosHð2Þ
ð2Þ � cosHð2Þ

ð2Þ � i1 � sinHð2Þ
ð2Þ � i2

� �
. ð29Þ
With allowance made for this equality the A matrix is transduced as follows:
q1n
ð1Þ
ð1Þ cosW

ð1Þ
ð1ÞA

ð1Þ
1ð1Þ q1n

ð2Þ
ð1Þ cosW

ð2Þ
ð1ÞA

ð2Þ
1ð1Þ aq2 cosH

ð1Þ
ð2Þ sinH

ð1Þ
ð2Þ �bq2cos

2Hð2Þ
ð2Þ

q1n
ð1Þ
ð1Þ cosW

ð1Þ
ð1ÞA

ð1Þ
2ð1Þ q1n

ð2Þ
ð1Þ cosW

ð2Þ
ð1ÞA

ð2Þ
2ð1Þ �aq2cos

2Hð1Þ
ð2Þ �bq2 cosH

ð2Þ
ð2Þ sinH

ð2Þ
ð2Þ

�Að1Þ
1ð1Þ �Að2Þ

1ð1Þ sinHð1Þ
ð2Þ � cosHð2Þ

ð2Þ

�Að1Þ
2ð1Þ �Að2Þ

2ð1Þ cosHð1Þ
ð2Þ sinHð2Þ

ð2Þ

������������

������������
.

The angles Hð1Þ
ð2Þ, H

ð2Þ
ð2Þ are easily determined via the Snell equations
sinHð1Þ

vð1Þ
¼

sinHð1Þ
ð2Þ

a
¼

sinHð2Þ
ð2Þ

b
.
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Inasmuch as the velocities a and b are known beforehand, one has
Hð1Þ
ð2Þ ¼ arcsin

a � sinHð1Þ

vð1Þ

� 	
; Hð2Þ

ð2Þ ¼ arcsin
b � sinHð1Þ

vð1Þ

� 	
.

4. Let the medium II be ideal compressible liquid (Fig. 6). Inasmuch as it cannot perceive shear stresses, the
S(2)-wave is absent ð _uð2Þð2Þ ¼ 0Þ and cohesion between the liquid and the elastic medium in the direction of
the Ox1 axis is lost. In this case the displacements and velocities of particles of the liquid and the solid,
directed along the Ox1 axis, do not coincide typically in the separating plane G. For this reason the third
equation of system (25) loses its validity and in matrix A the third line and the fourth column disappear,
so it takes the form:
A ¼

q1n
ð1Þ
ð1Þ cosW

ð1Þ
ð1ÞA

ð1Þ
1ð1Þ q1n

ð2Þ
ð1Þ cosW

ð2Þ
ð1ÞA

ð2Þ
1ð1Þ aq2 cosH

ð1Þ
ð2Þ sinH

ð1Þ
ð2Þ

q1n
ð1Þ
ð1Þ cosW

ð1Þ
ð1ÞA

ð1Þ
2ð1Þ q1n

ð2Þ
ð1Þ cosW

ð2Þ
ð1ÞA

ð2Þ
2ð1Þ �aq2cos

2Hð1Þ
ð2Þ

�Að1Þ
2ð1Þ �Að2Þ

2ð1Þ cosHð1Þ
ð2Þ

�����������

�����������
. ð30Þ
The unknown vector w and the vector bp of the right member of the equation system are reduced to the
form:
w ¼ _uð1Þð1Þ _uð2Þð1Þ _uð1Þð2Þ

� �T

;

bp ¼ q1n
ð1Þ cosWð1ÞAð1Þ

1 _uð1Þ q1n
ð1Þ cosWð1ÞAð1Þ

2 _uð1Þ Að1Þ
2 _uð1Þ

� �T

.

So, solving vector equation (25) with coefficient matrix (30), it is possible to find the three components of
the required vector w.
Fig. 6. Interaction of a discontinuous wave with an interface between anisotropic elastic and liquid media.
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5. Results of analysis

With the aid of the proposed technique, the problem of propagation and dynamic interaction of shock-
type waves with plane and curvilinear interfaces G between transversally isotropic media is studied.

In the first case the source of the shock wave in medium I is a spherical cavity C with the unit radius and
its center x1 = x2 = x3 = 0 located at a distance 10 m from the interface plane G. The plane is perpendicular
to the Ox2 axis, which coincides with the axis of symmetry of the elasticity parameters of the media I and II.
Owing to the symmetry properties, the components cik,pq of the tensor of the elasticity constants are con-
veniently represented as a six-row square matrix (Cab). The correspondence of their elements is established
by the scheme
ð11Þ $ 1; ð22Þ $ 2; ð33Þ $ 3; ð23Þ ¼ ð32Þ $ 4; ð13Þ ¼ ð31Þ $ 5; ð12Þ ¼ ð21Þ $ 6.
Inasmuch as the elastic properties of a transversely isotropic medium are characterized by five irreduc-
ible parameters, the (Cab) matrix is represented as
ðCabÞ ¼

kþ 2l k k� l 0 0 0

k kþ 2l k� l 0 0 0

k� l k� l kþ 2l� p 0 0 0

0 0 0 l� m 0 0

0 0 0 0 l� m 0

0 0 0 0 0 l

0
BBBBBBBBB@

1
CCCCCCCCCA
. ð31Þ
It follows from (31) that the deviation of the examined media from isotropic ones is determined by the
three parameters l, m, p, where k and l are the Lame parameters.

It is assumed that a normal pressure with intensity p0 = 109 Pa is instantaneously applied to the cavity
surface, which generates not only a quasi-longitudinal (qP), as in isotropic media, but also quasi-shear (qS)
shock-type waves with axially symmetrical front surfaces. Owing to all this, the intensity of the quasi-shear
wave, which is polarized orthogonally to the first two, is equal to zero. The front surface of the other qS-
wave lags behind the qP-wave front and it is not discussed here.

After interaction with the G interface, also only two types of each of axisymmetric reflected and refracted
waves polarized in the plane of axial cross-section are initiated.

The materials of the media have the elastic characteristics k1 = 4.972 · 1010 Pa, l1 = 3.906 · 1010 Pa,
q1 = 2650 kg/m3 and k2 = 3.409 · 109 Pa, l2 = 1.364 · 1010 Pa, q2 = 2760 kg/m3. The quantities l, m, p,
which disturb the isotropy properties are chosen to be l1 = �0.5k1, m1 = �0.4l1, p1 = �0.5(k1 + 2l1),
l2 = 0.5k2, m2 = 0.3l2, p2 = 0.1(k2 + 2l2).

In Fig. 7, the lines of fronts of the incident (qP � 1), reflected (qP(1) � 2 and qS(1) � 3) and refracted
(qP(2) � 4 and qS(2) � 5) waves are shown for the selected time instant. The values of the media particles

velocities _uð1Þ, _uð1Þð1Þ, _u
ð2Þ
ð1Þ, _u

ð1Þ
ð2Þ, _u

ð2Þ
ð2Þ are plotted on the corresponding lines in the same scale. It can be seen, that

the intensity of the refracted qP(2)-wave exceeds the intensities of the qP- and qP(1)-wave at the Ox2 axis.
This effect does not contravene equations (26) with additional comment, that the qP- and qP(1)-wave have
moved to greater distances from the G plane and have lost the greater parts of their intensities.

Solving the problem of twofold interaction of a discontinuous wave with curvilinear interfaces permits
one to simulate the phenomena of focusing and dissipation of a plane wave front by elastic anisotropic
hyperboloid lenses. Then for equations (11) and (25) to be used, they are formulated in coordinate systems
locally slewed through appropriate angles. In Fig. 8, the results of the construction of a shock wave front
transformation by an elastic lens are demonstrated. The plane discontinuous P-wave front is propagating
along the Ox2 axis in medium I with the property parameters k1 = 4.972 · 1010 Pa, l1 = 3.906 · 1010 Pa,
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l1 = �0.6k1, m1 = 0.2 l1, p1 = 0.1(k1 + 2l1), q1 = 2650 kg/m3. Then it interacts with the hyperboloid inter-
face G1 between the initial medium and medium II (hyperboloidal lens) with the parameters k2 = 3.977 ·
109 Pa, l2 = 1.591 · 1010 Pa, l2 = �0.3k2, m2 = �0.2l2, p2 = 0.1(k2 + 2l2), q2 = 2760 kg/m3. In conse-
quence of this, the wave rays deflect their directions and the wave front becomes curvilinear. Thereupon
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after interaction of the transformed wave front with the second interface surface G2, the phenomenon of the
wave front focusing is completed. Note, that the problem about dynamic interaction of a discontinuous
wave with two curvilinear interfaces presents complicated calculational difficulties, inasmuch as four waves
generated supplementally on the first interface and eight waves on the second one should be calculated in
addition. Therefore the problem of tracing all of them is rather cumbersome. Because of this, in Fig. 8 the
fronts of the first qP-wave are plotted only, as the fronts of other waves lag behind the selected qP-wave
fronts and do not affect them.

Besides, it is impossible to calculate the wave intensity at the focal points, because the ray divergence J

tends to zero (see (9)) at them and the procedure of division in equality (9) loses its sense. For this reason
the uð0Þq value increases endlessly (in the frame work of the theory of ideal elasticity) and the wave intensity
acquires infinite value.

But if to change media I and II by their places (Fig. 9), the discontinuous wave is scattered by the lens,
the J value enlarges and according to (9) the wave intensity uð0Þq decreases.
6. Conclusions

The problem about discontinuous wave interaction with the interface between anisotropic elastic media,
accompanied by formation of reflected and refracted quasi-longitudinal and quasi-transverse discontinuous
waves, is considered on the basis of the ray method of geometrical optics. It is associated with the questions
of geometrical construction of evolving fronts of moving field function discontinuities and calculation of
their magnitudes presenting the most comprehensive information about intensity of the impulse carried
by the wave at every point of the front. The answer to the first question is provided with the use of the Snell
equations. To give the answer to the second one, the zeroth approximation of the ray method is used.

The approach outlined is especially effective in the vicinity of interfaces between anisotropic elastic media
because it permits one to use general correlations of momentum conservation principle of the theory of ste-
reomechanical impact, formulated for the media particles involved into motion owing to impact interaction
of the incident, reflected and refracted waves. With such a method, the constitutive equations of the inci-
dent discontinuous wave interaction with a free surface, absolutely rigid body, liquid and other elastic
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isotropic or anisotropic media are formulated. Software is elaborated for computer simulation of the con-
sidered processes.

With the aid of the proposed technique, the phenomenon of evolution of a discontinuous wave generated
by a shock impulse in a spherical cavity in a transversely isotropic medium is traced. Geometrical construc-
tion of the wave fronts and the calculation of the wave discontinuity values are performed for different time
instants. Dynamic interaction of the wave with a plane interface is investigated. It is established that the
intensity of the refracted qP-wave exceeds the intensity of the incident qP-wave for the chosen values of
the media parameters.

The effects of discontinuous waves penetrations through elastic anisotropic lenses are analysed. It is
shown, that depending on the elastic properties of the lenses and ambient medium, they can focus or scatter
the discontinuous waves. As this takes place, dynamic stresses in the focal points tend to infinity in the
framework of the theory of ideal elasticity.
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