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Abstract

The problem about dynamic interaction of discontinuous waves with interfaces between anisotropic elastic media is
considered. To investigate this phenomenon accompanied by formation of reflected and refracted quasi-longitudinal
and quasi-shear discontinuous waves, a technique based on joint usage of the zero approximation of the ray theory
and method of stereomechanical impact is proposed. It is used for the analysis of the wave front transformation, scat-
tering and focusing. The setup problem solutions can be applied to discovering the most seismically hazardous zones in
the earth’s crust, interpretation of geophysical data about geological rock structures and the analysis of the causes of
dynamic delamination of layered composite and nanomaterials.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In studies of discontinuous (shock type) waves propagation in elastic media, the greatest attention is, as a
rule, devoted to geometrical construction of the evolving field-function discontinuity surfaces and calcula-
tion of the discontinuity magnitudes, which provide the most complete information about the wave front
transformation and the intensity of an impulse carried by the wave at each point of the front surface.

As to seismology these questions are topical for investigation of the wave processes taking place in the
earth’s crust and for description of behaviour of seismic waves in the vicinity of tectonic inhomogeneities,
where the waves can endure the effects of focusing or scattering. These effects manifest themselves most
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clearly in the convex and concave parts of the interfaces between rock structures. It is known, that there are
no ways of prognosticating and eliminating the earth-quakes, but using the questions solutions it is possible
to find the tectonic regions, where the natural seismic waves can focus and concentrate their energy provok-
ing collapse of above-ground and underground constructions or where the waves disperse without damage
for the environment.

In the course of seismic reconnaissance of mineral resources the considered results are useful for theo-
retical interpretation of geophysical data about the explored geological rock structures.

The problem solution can also be used for the analysis of explosion wave influence on environment and
for elaboration of rational methods for pursuance of explosion works eliminating the possibility of artificial
earthquakes generation at predetermined regions.

The considered features are inherent also in mechanics of composites and nanomaterials. One of the most
important advantages of the composite materials is their property to withstand shock loads and dissipate
mechanical energy of vibrational motions. It is associated to some extent with non-homogeneity of the struc-
ture materials and existence of interfaces between the system subdomains, where the moving fronts of strain
saltuses experience the reflection—refraction effects. In consequence of execution of several acts of this type
effects the wave fronts diffract and the shock wave dissipates through transformation of the strain energy into
heat. However these phenomena are very often accompanied by undesirable changes of the composite med-
ium structure, correlated with disruption of bonds between its components and the structure delamination.

The discussed phenomena are usually characterized by short duration of highly intensive initial field
of pressure, which at the initial stage of time is concentrated, as a rule, in a small domain adjacent to
the zone of impact initiation of the wave and by transformation of the wave front surface as it propagates.
Inasmuch as in this case the boundary of the domain chosen for calculation evolves with the wave front
progress, the solution has to be found in the family of discontinuous functions evolving in time. So the tra-
ditional classical and numerical methods turn out to be of low efficiency for the analysis of the similar
processes.

For the solution of the problems of such type a prominent role is played by the methods of geometrical
optics (Fedorov, 1968; Karal and Keller, 1959; Ogilvy, 1990; Podilchuk and Rubtsov, 1988, 1996), used in
the theory of field discontinuity front propagation in non-dispersive media. They are correlated with appli-
cation of a ray coordinate system wherein aggregate of the coordinate surfaces coincides with the evolving
surfaces of the non-stationary waves. Formally, this approach is realized through representation of the
wave equation solution in terms of a ray series. By means of its use, an Ficonal equation and transport
equations system are constructed. The former is a non-linear partial differential equation describing the
front surface and the ray aggregate. So it is referred to as kinematic equation. The transport equations con-
stitute a system of linear partial equations. They determine the field functions at the front surface and be-
hind it. So these equations are referred to as dynamic ones. Obviously the field discontinuity generated at
the front surface is described by the zeroth term of the ray series.

It should be emphasized that the equation system obtained in this way is also very complicated and the
convergence of its solutions can be achieved in the simplest cases only. For this reason, usually the greatest
attention is paid to the zeroth approximation of the ray method (Petrashen, 1980), providing good quan-
titative description of the wave phenomenon in a small vicinity of the wave front. Its application allows one
to construct the evolving front, to determine the wave polarization vector at every point of its surface, to
calculate the discontinuity magnitudes of the functions of strains and stresses and also the wave phase as
functions of the ray coordinates. As to this method, the zeroth term of the ray series is taken into account,
which can be calculated independently of other ones. This point has a simple mechanical explanation. It lies
in the fact that every element of the discontinuous wave front moves with the sound speed. It has the largest
value at the point considered and no other perturbation can move faster in its vicinity. So the dynamic per-
turbations from other points of the medium cannot overtake the particular element and affect on the value
of its field function discontinuity.
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In parallel with this, the zeroth approximation of the ray method used jointly with the locally plane ap-
proach (Petrashen, 1980; Gulyayev et al., 2002) allows one to state the problem about interaction of shock
waves with interfaces between the elastic media possessing different mechanical properties. This problem is
associated with the necessity to construct kinematically the front surfaces of reflected and refracted waves
with different polarizations and to calculate dynamical parameters of the field discontinuities on these
fronts.

The technique for solving the kinematic problem of the interactions like this is based on the analysis of
the Snell equations. In the cases of transversally isotropic elastic media, these equations are essentially non-
linear. Gulyayev et al. (2000) proposed a procedure for their solution, which rests on combined application
of the method of continuation by a parameter and the Newton method. To analyse peculiarities of the field
discontinuity transformations in interfaces between elastic media, usually the conditions of stresses conti-
nuity are used (Fedorov, 1968; Petrashen, 1980). This approach is rather complicated, because it is not con-
venient to express the field discontinuities through stresses, especially in the cases of anisotropic media. But
when the zeroth approximation of the ray method is used, an alternative method of attack becomes more
rational, which relates to the above-stated effect of discontinuities values independence on dynamic pertur-
bations located behind the front.

It is based on the integral formulation of physical laws, which are completely equivalent to the differen-
tial statement of the problem for the continuous processes. According to the mentioned principles, both
some integral correlations between functions and their lowest derivatives (the kinematic conditions of com-
patibility) as well as the law of momentum conservation are satisfied in the moving discontinuities surfaces.
This idea (Gulyayev et al., 1997), based on the theorem about the momentum conservation at impact inter-
action (Gol’dsmit, 1960), was used for formulation of equations of dynamic interaction of a discontinuous
wave with an interface between isotropic elastic media. In (Anikiev et al., 2000) this approach was used for
theoretical and experimental investigation of the phenomenon of quasi-total internal reflection at the inter-
face between water and elastic media. Here it is used in the framework of the ray method zeroth approx-
imation for the description of the dynamical process at statement of the dynamic boundary conditions in
the surfaces interfacing anisotropic media.

2. The problem statement

Let physical properties of a homogeneous anisotropic medium be defined by the elasticity parameters
Cik,pg = const. and density p = const. The medium motion is described by the equations

3 2 2
> T T4 (1=1,2,3) (1)

ik,pq YY)
Rl Ox;Ox, Ot

where x|, x, x5 are the Cartesian coordinates; uy, u,, u3, the components of the elastic displacement vector;
t the time; Ai py = Cikpyl P-

The system (1) solution is represented in the form of a plane monochromatic wave with wave number k
and phase velocity v. Its fronts are surfaces of constant phase n-r — v - ¢ = const., moving with the velocity
v =v-n and coinciding locally with areas perpendicular to the unit vector n.

The wave polarization vector A and the phase velocity v are determined for the selected direction n on
the basis of homogeneous algebraic equations relative to A; (Fedorov, 1968; Petrashen, 1980)

3
> aprinpdy —VA; =0 (i=1,2,3). (2)

kpg=1
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With the help of these equations one can find three values of the velocity
v(m) > v@(m) = v®¥(n) >0
and polarization vectors A" defining the displacement vectors
u” =AY (r=1,2,3). 3)
If a discontinuous wave is considered, the constitutive equations provide that its front surface may be
represented by the correlation
T(x1,%2,%3) —t = 0, 4)

where the function 7(xy, X, x3) has to satisfy the first order partial differential equation (Petrashen, 1986)

3
7 ik AVAT = 1.
ik.p.g=1

It generalizes the Eikonal equation used in geometrical optics for the construction of systems of rays and
fronts to the case of anisotropic elastic waves.

The quantities p, (k = 1,2,3) included in the above equation represent the components of the refraction
vector p, = 0t/dx; = m /v (n) (k=1,2,3).

The above equation must be solved to be able to reconstruct the transforming fronts of the wave. Using
the method of characteristics this equation is rearranged to the system of ordinary differential equations

d y (1) 4)
dr & = Z /Il‘k.,pqpp‘Aq 4;7,
ipg=1 (5)
dp,
— =0 (k=1,2,3).
dt ( 2,3)

The first group of these equations describes the wave propagation along the ray with the ray velocity
&= &(n, x;), which generally does not coincide with the phase velocity v\”). In case of a homogeneous med-
ium the ray is rectilinear, but it is not orthogonal to the phase front. Points on the surface of the front, at
which the determinant of the matrix

3
Z ;LikquA[(]wAgr)

ip.q=1

(k=1,2,3)

of the coefficients of the right-hand side of this system vanishes, are bifurcation points, since, in a small
vicinity of them, two or more rays may correspond to one direction of the vector of the normal n (Arnold
et al., 1984; Kravtsov and Orlov, 1980; Poston and Stewart, 1978; Gilmore, 1981). Hence, these points are
located either on caustics or at focal points of the rays.

The system of rays and wave fronts constructed with the use of (5) enables one to proceed to determine
the wave intensity in the neighbourhood of the wave front. For this purpose, it is convenient to expand the
solution of (1) along the ray behind the front into the series

Uy = Z%u((lm)(xl7)€2,x3)fm[t — T(xl,xz,x3)] (g= 17273)7 (6)

where the functions f,,, satisfying the correlations f] (v) = f.—1(y), are supposed to possess discontinuities
of their derivatives, for example, of the order n + 2 (Petrashen, 1980).

In formulating the problem about the wave behaviour in a small vicinity behind its front and calculation
of the stress discontinuity, only one term m = 0 is retained in (6), so

Uy = ME,O)(xl,xbm) [t = t(xn, X0, x3)] 7
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and the vector u'” is calculated using the homogeneous system of equations

3
Z)”ik,mpkppul(]m - ul(O) =0 (l = 1a 2a 3)’ (8)

kg
which have the solution (Petrashen, 1980)
u(o) _ CO((X7 ﬂ) : A;r)((x7 ﬁa T)

! J (e, B, 7)

Here o, f8, T are the system of ray coordinates and the quantity

(g =1,2,3). 9)

a(xl,.Xz,X3)
0(x, B, 7)

is a functional determinant for conversion of the ray coordinates into Cartesian ones. It is the measure of
the ray divergence in the ray tube.

The above relations make it possible to follow the evolution of a shock type wave front and calculate the
field-function discontinuity on its surface, as it propagates in a homogeneous anisotropic medium.

J = (10)

3. Kinematics of a discontinuous wave interaction with a plane interface

In study of interaction of a discontinuous wave with an interface we are to solve two problems—
kinematic and dynamic ones. The first problem is reduced to the construction of the front surfaces of
the reflected and refracted waves produced at interaction of the incident wave with interface surface G
between media I and II (Fig. 1). To set it up, a “locally plane approach” (Petrashen, 1980) is used, whereby
all the front surfaces in the small vicinity of the point of the wave interaction with the interface (as also the

1
X2 \®§2))

X7

Fig. 1. Scheme of the wave velocities directions.



V.I. Gulyayev, G.M. Ivanchenko | International Journal of Solids and Structures 43 (2006) 74-90 79

surface G is itself) are considered to be locally plane. It allows one to assume, that at reflection-refraction of
a plane wave at the plane interface, reflected and refracted waves are generated, which also belong to the
family of plane waves. The solution technique for the first problem, based on the use of the formulated pre-
mise, leads to the necessity to solve the generalized equations of Snell, which in case of transversally iso-
tropic media take the form:

sin @) sin @!" sin @
VO(O7) V(@) v (oW (v, p=1,2). (11)
vi(077) vy (037)

Here the designations are specified: the superscript in brackets denotes the wave with number r,v, u = 1 cor-
responding to quasi-longitudinal (quasi-primary) gP-wave and r,v,u =2 corresponding to quasi-shear
(quasi-secondary) ¢S-wave; the subscript in brackets indicates the medium number; the values v\ and
0" without subscripts relate to the incident wave propagation in the first medium.

The difference between correlations (11) and the usual form of the Snell law is in the denominators
vVY(OM),vW(OW) dependence on the unknown angles @, @ and, implicitly, on the incidence angle
©. So, in order to find the values of angles @), @" (v, u = 1,2) corresponding to the preset O, it is neces-
sary to solve the initial non-linear system. With this aim in view, the Newton method is used jointly with the
method of continuation by a parameter (Gulyayev et al., 2000).

The condition of possible non-uniqueness of the system (11) solution corresponds to the convergence
(tangency) and intersection of the reflected and refracted rays after the incident rays interaction with the
interface G, while the aggregate of such critical states is related to the formation of an envelope of the fam-
ily of rays, which is referred to as a caustic. The caustics give rise to the formation of geometrical singular-
ities at the surfaces of the reflected and refracted wave fronts as a result of interaction of a regular incident
wave front even with a plane boundary G.

Since the singularities of the wave fronts are generated on the caustics, they will also be focused on the
caustics, giving rise to the vanishing of the functional determinant J in (9) and an unlimited increase in the
field intensity at the points of geometrical singularities. At the caustics the wave phase is also reversed
(Kravtsov and Orlov, 1980).

4. Dynamics of a discontinuous wave interaction with a plane interface

After the construction of the system of rays and fronts of the reflected and refracted discontinuous
waves, it becomes possible to proceed to the investigation of dynamics of the incident wave interaction with
the interface between two elastic media. With this aim in view, it is necessary to present the equations of
boundary conditions at the interface surface

() — )|, =0, (12)
(620) + 6202))|, = 0, (13)

where u(;), () are the velocity vectors of the media particles at the interface G; a51), 622), the vectors of
density of the forces o, acting on the elementary area x, = const. in media I and II, correspondingly.

But inasmuch as in our case the investigations are performed in the framework of the zeroth approxi-
mation of the ray method (Petrashen, 1980) and the problem is stated in terms of the velocity discontinu-
ities of the elastic elements, it is more convenient to use the integral approach for the description of
dynamical processes at interaction of the wave fronts and to resort to the methods of the theory of stereo-
mechanical impact (Gol’dsmit, 1960). Furthermore, in analysis of the shock wave interactions with the
curvilinear interface G the locally plane conception of the statement is applied.
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To substantiate the validity of the used approach to the problem of a discontinuous wave interaction
with an interface between two anisotropic elastic media it should be pointed out that in the framework
of the zeroth approximation it is absolutely identical with the technique based on the application of equa-
tion (13) and in this paper it is used only for simplifying the algebraic and differential transformations.

At first, take into consideration a simple example. Let a short discontinuous impact propagate in a bar of
unit area with discontinuous properties of elasticity module E; and densityp; (i = 1,2) in its parts [ and 11
separated by interface surface G (Fig. 2). Before impact interaction with G the particles in the discontinuous
wave have velocity i‘EU’ which is considered to be constant inside the wave with the length v(;) - Az. Here
vy = v/E1/p, is the wave propagation velocity; Az, the impact action duration; the indices I, R, T denote
the incident, reflected and transmitted waves.

It can be written as

ou . Ou

a T

At the wave front the equalities are valid as follows:
x=v-t, dx=v-dr

c=Fe¢ ¢=

Herefrom it issues as

Ou_ Ou 1.

e= T ot
Using these correlations, one gains
— E i il —
===

o=FEe oV -

and

o-At=pv-u-At=1u-Am=AQ.
Here Am = pv - At is the mass of the bar particles involved into the motion, AQ is the momentum of these
particles.

Now consider the condition of momentum conservation for the bar elements involved into motion
before the impact with the interface G and after the impact (Gol’dsmit, 1960)

AQ; = AQr + AQg. (14)
V) At
Interface
Ei ;1 < BN Bz, p;
. . >
Before impact Ugy iy X
vy At v, 1
Voo :: :: Voo
After impact ug Uy,

Fig. 2. Discontinuous wave interaction with the bar interface.
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After appropriate substitutions, the equation that defines the connection between velocities of the par-
ticles of the incident, transmitted and reflected waves is deduced as follows (Fig. 2)

pr(l)l'lL) = sz(z)l'/(ra — pr(l)ilﬁ). (15)

This equation is identical to the equation

01 = 01 — OR (16)
resulting from (13).

The identity shown suggests that the approach to the task of determination of the stress discontinuity
interaction with the interface by the use of momentum conservation condition and stereomechanical theory
of impact (Gol’dsmit, 1960) is equivalent to the technique based on application of the condition of the stress
continuity in the form of Eq. (13).

To apply this technique to the considered problem for anisotropic elastic media initially stop on some
preliminary remarks. Note, that a discontinuous wave front is surface (4) or

n-r

s 1
=0 (17)
where v=v-n.
So
a T —ar. (18)

v
Then it issues from (7) as

. Ouy 0
i, = T ”1(1)
and

Ouy;  Ouy 1 )
on vor v i (19)

Equality (19) is valid at wave front surface (17) only and it testifies that the element strain Ou,/0n and its
velocity Ou, /0t differ solely by the constant denominator v, for this reason they are equivalent at the prob-
lem statement.

It is important also to underline that the correlation

a" = gMA® (20)

follows from (3).

At statement of dynamic conditions of interaction of the incident, reflected and refracted discontinuous
waves at interface, the zeroth approximation of the ray method is used. The locally plane statement of the
problem in the small vicinity of the interface and the integral approach permit one to apply to the methods
of the theory of stereomechanical impact (the principle of momentum conservation) for the phenomenon
description.

According to this conception, now consider that a plane quasi-longitudinal shock type discontinuous ¢P-
wave, propagating with phase velocity v'" in medium I, interacts at an incident angle @ with a plane
interface G, x, =0 between media I and II. In the plane of symmetry x3 =0, which is perpendicular to
the wave front and plane G, separate a quadrangle element of thickness v'" - Ar by two rays /; and J, in
medium I behind the front (Fig. 3). Here Az is so small time segment that it becomes possible to neglect
change of discontinuous components of the field functions behind the front and to consider them to be con-
stant. Underline, that the last assumption is in correspondence with the zeroth approximation of the ray
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X2

X

segment of an incident
wave front

Fig. 3. Scheme of a discontinuous wave element motion.

method. Assume, that the rays /, and / intersect G at the angle ¥'" and separate unit length segment AB in
it. Then the distance between the rays measures 1 - cos P,

At interaction of the considered wave with the plane G, two plane reflected (¢P(1),¢S(1)) and two plane
refracted (¢P(),¢S(2)) waves, polarized also in the incident plane, are generated. As it takes place, two pairs
of quadrangle elements between the appropriate rays behind the fronts of the generated waves correspond
to the separated element behind the front of the incident wave (Fig. 4).

Reasoning from the integral approach in the theory of discontinuous waves, considering the conditions
of kinematic compatibility and dynamic conservation in the wave front (Petrashen, 1980), the description of

X2

Fig. 4. Interaction of a discontinuous wave with an interface between anisotropic elastic media.
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dynamic interaction of this waves in the interface G will be performed on the basis of the principle of
momentum conservation at impact (Gol’dsmit, 1960) applied to the elements of the media I and II, involved
into motion by virtue of the impact interaction.

Calculate the vector AQ" of momentum of the element separated from the incident wave. Assume that
dimensions of all the elements along the x; coordinate locally equal a unit. Then the element mass is
pl - &V Ar-cos P and the momentum vector is AQ(1) = p, - &V - Az - cos ¥

After interaction of the incident wave with the G interface the plane reflected and refracted waves are
generated. In their layers of quite small thicknesses v;A¢ behind the front planes, the field function compo-
nents experienced the discontinuity (the u function derivatives with respect to the normal and time, as well
as strains and stresses) remain constant. In the elements of these layers, formed by interaction with the ele-
ment separated from the incident wave (Fig. 4), the unknown values of the media particles velocities con-

stitute uE ) (1n the reflected gP(;)- and ¢S(;)-waves) and i u g; (in the refracted gP(,)- and ¢S»)-waves),
whereas thelr momentum vectors are equal to
m _ m, =M M @ _ (), £(2) +(2)
AQuy = py-cos ¥y -y - Aty AQpy = py - cos ¥y - Gy - At -y, 21
1 1), (1) A () (), £ :(2)
AQpy = py-cos Wy - £y - At -y, AQ<2) =py-cos W - &) AL

Vector of the medium particle displacement behind the wave front is represented by (3). Taking into ac-
count this equality and correlations (21) one gains

AQWY = p, - cos P . & At iV (4Viy 4+ 4Miy),
AQU) = p;-cos P - &l A i) (4 ()i + AY))  (i=1,2). (22)
Here A A 2 are the projections of the corresponding vector of polarization on corresponding axes;
r=1,2 1dent1ﬁes the wave polarization type; i = 1,2 is the medium number.
Inasmuch as the momentum of the elements of media I and II, involved into motion after interaction of

the incident wave with the plane G, does not change in consequence of this interaction, the condition of
dynamic joining the solution in the plane G can be represented in the form

AQY = AQ(}) + AQ[) + AQ))) + AQ[;). (23)

It is complemented by condition (12) of compatibility of velocities of particles of media I and II in the G
plane:

(ﬁJrﬁ(l))’G = l.1(2)’(;' (24)

Considering i) to be prescribed, after projecting vector correlations (23), (24) on the axes Ox;, Ox, one

gains four scalar equations for determinations of the unknown velocities uE:;, u(zi, uE g, ug; Represent them

in the matrix notation:
A-w= bp, (25)
where A4 is the matrix of dimension 4 x 4:

M ) 2) (1) (1) 4(1) @) (2) 4(2)
plf cos‘l’ A I plé cos‘I’ A1<1) P2 cos Wip Ay 5 pa& cos W5 A

plf cos?’<1)A ) pli cos'P A?)) pzfg cos‘P A >) pzégicosl{/(z)flf;

(1) ) ) ©)
_A1<1> _AIU) _A1(2> —4

2(1) @) () @)
— A1) —A0) —Ax —4
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T
w= (uE}; i) il ilé)) is the vector of unknown values; b, = (p,;&" cos ¥V A4V p M cos P

AV iAW 40T is the vector of the right-hand side, corresponding to the incident gP-wave.

To confirm the reliability of the performed transformations and the constructed correlations, consider
the marginal state of the system, when a small locally plane element of the front moves along the Ox, axis
in such a manner, that ¥(;, = 0 and the normal n is collinear to the axis Ox,. Then the quasi-longitudinal
gP-wave becomes completely longitudinal and known correlation (15) for normal interaction of a plane

longitudinal shock type wave with the plane interface between isotropic elastic media should be valid. Gen-
uinely, as in doing so A(li)w =—1, A(ll(i) = Aﬁl(g =0, = 'I’EB = ‘PE;; = ?’Efi = 0, system (25) with the ma-
trix A disintegrates into two unjoined systems of two equations with the solution

. . 2/)1"(1> . .2 .2
i, gy =i, gy =0, g =0, (26)
P2V(2) + PV

which coincides with the solution, represented in Gol’dsmit (1960) relative to stresses.

Furthermore, the values of the medium particle velocities found with the help of (25) play the role of
initial conditions and are u 9(a, B,0) used in the formulae like (8) and (9).

If the incident wave is qua51 -shear (¢S), the technique of transformations is the same, only the expression
for the momentum vector of the system before the impact changes. In this case the vector

AQ® = p, -cos P@ . £ Ar i (AP + 4P)
is used instead of AQ(;, and Eq. (25) is replaced by
A-w = bg,
where 4 and w are the same but the right-side term assumes the form
bs = (p;¢? cos WA i p eP cos PPAT P AP AT i)
From the setup problem about dynamic interaction of a discontinuous wave with an interface G between

anisotropic elastic media I and II, particular cases follow.

1. For example, let the plane G be a free boundary of medium I (Fig. 5). The equality AQE;; + AQg; =0
should be satisfied, according to which condition (23) is simplified to the form

00" =0+ s

=
-
o
=
2
=
€
=3
o
=
IS
=
o
S
[
=3
o,
=
o
=
-+
=
o
w2
<
w2
28
o
=

(27)
Plé

whereas Eq. (24) loses its meaning and is excluded from consideration.So it follows that when a plane

gP-wave falls normally on G, system (27) has the unique solution uEB = —uh, uEf; = 0. In this case,

as in the theory of isotropic discontinuous waves, only one plane discontinuous ¢P-wave reflects,
which has the same polarization and intensity, but opposite phase.

2. In the case, when elastic medium I is rigidly connected with absolutely rigid body II in the plane G, the
inverse situatlon occurs The equations of momentum conservation are not valid and on the strength of
equalities u =0, u;,, =0, condition (24) takes the form

(i + “(1)) |G =
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X2
G XJ
RS TISE, s FES LTI,
I l'_l(l)
g(l) 1
(2
&) D
. b 1
P ut \Pg) U ® qPq)
(1) (1 qS(l
¥ ¥

Fig. 5. Interaction of a discontinuous wave with a free boundary.

The two unknown values

- ( 2 _
( n
- ( 2 _
(1) 1

E . uﬁ; are determined through the use of the equations

Al i) + A = -4, o8)
A( ity + A5y i) = —A5 .
If the incident wave front is parallel to the G plane, also only one plane discontinuous ¢P-wave reflects,
for which, as in the theory of isotropic discontinuous waves, the discontinuity value, polarization and
phase coincide with the appropriate characteristics of the initial incident wave.
. Now consider the case, when medium II is isotropic and is characterized by the elasticity parameters 4,,
Lo, p». In this case all the directions are equivalent in this medium and only two kinds of waves can prop-
agate in it. They are the purely longitudinal P-wave with the velocity o = \/ (4, + 2u,)/p, and the purely
shear S-wave with the velocity f = /1, /p,. As it takes place, the wave front surface is orthogonal to
rays, the vector of ray velocity coincides with the vector of phase velocity and the velocities of particles
displacements are in parallel with the rays for the P-waves or orthogonal to them for the S-waves. Cal-
culate momenta of elements of the corresponding particles of the refracted wave, which relate to the unit

segment AB of the interface G (Fig. 4)
AQE; + AQE =o-At-p,- u cos@ (sin @(1) -i; — cos @8 ‘) +p-At-p,- ug;

- cOs @<2 ( cos G) i; —sin @ ) (29)
With allowance made for this equality the A matrix is transduced as follows:
pléE}; cos lPEiiA(ll(i) 01 58; Ccos ‘FE?;A?()U o, COS @E;; sin @Ei; —ﬁpzcosz@g;
pléﬁii cos 'PEBA%) 01 fﬁ; cos ‘I’ET;A%) —OCpZCOSZQEI; —pp, cos @g% sin @83
—A(ll()l) —Aﬁz()l) sin @E —cos @8
—A%) —Agz()l) cos @E sin @g;

The angles @8, @g; are easily determined via the Snell equations
) . 1 G
sin @M _ sin @EZ; _ sin @EZ;
vl o B
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Inasmuch as the velocities « and f§ are known beforehand, one has

in@W ineW
m . [o-sin® @ _ . (f-sin®
0, = arcsin (T ;0 =arcsi o )

. Let the medium II be ideal compressible liquid (Fig. 6). Inasmuch as it cannot perceive shear stresses, the

S(2)-wave is absent (ug; = 0) and cohesion between the liquid and the elastic medium in the direction of
the Ox; axis is lost. In this case the displacements and velocities of particles of the liquid and the solid,
directed along the Ox; axis, do not coincide typically in the separating plane G. For this reason the third
equation of system (25) loses its validity and in matrix 4 the third line and the fourth column disappear,
so it takes the form:

1 1) 40 2 2) 42 oo
pléﬁlicos ‘I’EI;A(I(;) pléglicos ‘PEI;AEJ) ocpzcos@gzi s1n@é2;

_ ) (1) 41) () (2 42 1)
A= p&yycos P idy,y  pi&cos Vi, —0p,c08°0 ;) : (30)
(1) 2) (1)
—A5 —45 cos O,

The unknown vector w and the vector b, of the right member of the equation system are reduced to the
form:

T
_ (0 @
W—(”m ") ”<2>)’
T
bpz(mé(”cosqf“)Ai‘)u(” &M cos A H A(zl)zk“)>.

So, solving vector equation (25) with coefficient matrix (30), it is possible to find the three components of
the required vector w.

Fig. 6. Interaction of a discontinuous wave with an interface between anisotropic elastic and liquid media.
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5. Results of analysis

With the aid of the proposed technique, the problem of propagation and dynamic interaction of shock-
type waves with plane and curvilinear interfaces G between transversally isotropic media is studied.

In the first case the source of the shock wave in medium I is a spherical cavity C with the unit radius and
its center x| = x, = x3 = 0 located at a distance 10 m from the interface plane G. The plane is perpendicular
to the Ox; axis, which coincides with the axis of symmetry of the elasticity parameters of the media I and II.
Owing to the symmetry properties, the components ¢y ,, of the tensor of the elasticity constants are con-
veniently represented as a six-row square matrix (C,p). The correspondence of their elements is established
by the scheme

(1) = 1; (22) =2 (33) <=3 (23)=(32) <4 (13)=@31) <5 (12)=(21) < 6.

Inasmuch as the elastic properties of a transversely isotropic medium are characterized by five irreduc-
ible parameters, the (C,) matrix is represented as

A+2u A A—1 0 0 0
A A+ 2u A—1 0 0 0
(Cop) = Aol ;“Ol HZ: P Mfm g (0) (31)
0 0 0 0 u—m 0
0 0 0 0 0 u

It follows from (31) that the deviation of the examined media from isotropic ones is determined by the
three parameters /, m, p, where 1 and u are the Lame parameters.

It is assumed that a normal pressure with intensity po = 10° Pa is instantaneously applied to the cavity
surface, which generates not only a quasi-longitudinal (¢P), as in isotropic media, but also quasi-shear (¢.S)
shock-type waves with axially symmetrical front surfaces. Owing to all this, the intensity of the quasi-shear
wave, which is polarized orthogonally to the first two, is equal to zero. The front surface of the other ¢S-
wave lags behind the ¢gP-wave front and it is not discussed here.

After interaction with the G interface, also only two types of each of axisymmetric reflected and refracted
waves polarized in the plane of axial cross-section are initiated.

The materials of the media have the elastic characteristics 4; = 4.972 x 10'° Pa, 1 = 3.906 x 10'° Pa,
p1 = 2650 kg/m* and /1, = 3.409 x 10° Pa, u» = 1.364 x 10'° Pa, p, = 2760 kg/m>. The quantities /, m, p,
which disturb the isotropy properties are chosen to be /; = —0.54;, m; = —0.4u, p1 = —0.5(4; + 2uy),
12 = 0.522, my = 0.3/.[2, P2 = 01(/L2 + 2,“2)

In Fig. 7, the lines of fronts of the incident (gP — 1), reflected (¢P(;) — 2 and ¢S(;) — 3) and refracted
(qP2) — 4 and ¢S(z) — 5) waves are shown for the selected time instant. The values of the media particles

velocities ", uE:;, uﬁ;, ug, ug; are plotted on the corresponding lines in the same scale. It can be seen, that

the intensity of the refracted gP)-wave exceeds the intensities of the gP- and ¢P(;)-wave at the Ox; axis.
This effect does not contravene equations (26) with additional comment, that the ¢P- and ¢P;-wave have
moved to greater distances from the G plane and have lost the greater parts of their intensities.

Solving the problem of twofold interaction of a discontinuous wave with curvilinear interfaces permits
one to simulate the phenomena of focusing and dissipation of a plane wave front by elastic anisotropic
hyperboloid lenses. Then for equations (11) and (25) to be used, they are formulated in coordinate systems
locally slewed through appropriate angles. In Fig. 8, the results of the construction of a shock wave front
transformation by an elastic lens are demonstrated. The plane discontinuous P-wave front is propagating
along the Ox, axis in medium I with the property parameters A; = 4.972 x 10'° Pa, u; = 3.906 x 10'° Pa,



88 V.I. Gulyayev, G.M. Ivanchenko | International Journal of Solids and Structures 43 (2006) 74-90

100 —
X,M
5 2.99 m/s
50 — 4
7 I
—
0 —\ I G
—
—\
=2\
= ’
1
-0 0.50 m/s
1.15m/s 0.45m/s
X, M
-100 I I I \
-100 -50 0 50 100

Fig. 7. Diffraction of a discontinuous wave at the plane interface.
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Fig. 8. Focusing a discontinuous wave by elastic lens.

Iy =—0.6A, my =02 wy, py = 0.1(A4 + 2p1), p1 = 2650 kg/m>. Then it interacts with the hyperboloid inter-
face G| between the initial medium and medium II (hyperboloidal lens) with the parameters 4, = 3.977 x
10°Pa, 1o =1.591x10""Pa, L, =—0.3), mr=—02u5, p»=0.1(Js+ 2u2), p»=2760kg/m> In conse-
quence of this, the wave rays deflect their directions and the wave front becomes curvilinear. Thereupon
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Fig. 9. Scattering a discontinuous wave by elastic lens.

after interaction of the transformed wave front with the second interface surface G,, the phenomenon of the
wave front focusing is completed. Note, that the problem about dynamic interaction of a discontinuous
wave with two curvilinear interfaces presents complicated calculational difficulties, inasmuch as four waves
generated supplementally on the first interface and eight waves on the second one should be calculated in
addition. Therefore the problem of tracing all of them is rather cumbersome. Because of this, in Fig. 8 the
fronts of the first gP-wave are plotted only, as the fronts of other waves lag behind the selected gP-wave
fronts and do not affect them.

Besides, it is impossible to calculate the wave intensity at the focal points, because the ray divergence J
tends to zero (see (9)) at them and the procedure of division in equality (9) loses its sense. For this reason
the uﬁlo) value increases endlessly (in the frame work of the theory of ideal elasticity) and the wave intensity
acquires infinite value.

But if to change media I and II by their places (Fig. 9), the discontinuous wave is scattered by the lens,
the J value enlarges and according to (9) the wave intensity uf]‘)) decreases.

6. Conclusions

The problem about discontinuous wave interaction with the interface between anisotropic elastic media,
accompanied by formation of reflected and refracted quasi-longitudinal and quasi-transverse discontinuous
waves, is considered on the basis of the ray method of geometrical optics. It is associated with the questions
of geometrical construction of evolving fronts of moving field function discontinuities and calculation of
their magnitudes presenting the most comprehensive information about intensity of the impulse carried
by the wave at every point of the front. The answer to the first question is provided with the use of the Snell
equations. To give the answer to the second one, the zeroth approximation of the ray method is used.

The approach outlined is especially effective in the vicinity of interfaces between anisotropic elastic media
because it permits one to use general correlations of momentum conservation principle of the theory of ste-
reomechanical impact, formulated for the media particles involved into motion owing to impact interaction
of the incident, reflected and refracted waves. With such a method, the constitutive equations of the inci-
dent discontinuous wave interaction with a free surface, absolutely rigid body, liquid and other elastic
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isotropic or anisotropic media are formulated. Software is elaborated for computer simulation of the con-
sidered processes.

With the aid of the proposed technique, the phenomenon of evolution of a discontinuous wave generated
by a shock impulse in a spherical cavity in a transversely isotropic medium is traced. Geometrical construc-
tion of the wave fronts and the calculation of the wave discontinuity values are performed for different time
instants. Dynamic interaction of the wave with a plane interface is investigated. It is established that the
intensity of the refracted ¢gP-wave exceeds the intensity of the incident ¢gP-wave for the chosen values of
the media parameters.

The effects of discontinuous waves penetrations through elastic anisotropic lenses are analysed. It is
shown, that depending on the elastic properties of the lenses and ambient medium, they can focus or scatter
the discontinuous waves. As this takes place, dynamic stresses in the focal points tend to infinity in the
framework of the theory of ideal elasticity.
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